Interplay between the Notch and PI3K/Akt pathways in high glucose-induced podocyte apoptosis.

نویسندگان

  • Xiao-Mei Wang
  • Min Yao
  • Shu-Xia Liu
  • Jun Hao
  • Qing-Juan Liu
  • Feng Gao
چکیده

Podocyte apoptosis contributes to the pathogenesis of diabetic nephropathy (DN). However, the mechanisms that mediate high glucose (HG)-induced podocyte apoptosis remain poorly understood. Conditionally immortalized mouse podocytes were cultured in HG medium. A chemical inhibitor or a specific short-hairpin RNA (shRNA) vector was used to inhibit the activation of the Notch pathway and the PI3K/Akt pathway in HG-treated podocytes. Western blotting and real-time PCR were used to evaluate the levels of Notch, PI3K/Akt, and apoptotic pathway signaling. The apoptosis rate of HG-treated podocytes was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling and annexin V/propidium iodide staining. In HG-treated podocytes, PI3K/Akt pathway activation prevented podocyte apoptosis in the early stage of HG stimulation and Notch pathway-induced podocyte apoptosis in the late stage of HG stimulation. The inhibition of the Notch pathway or the activation of the PI3K/Akt pathway prevented cell apoptosis in HG-treated podocytes. These findings suggest that the Notch and PI3K/Akt pathways may mediate HG-induced podocyte apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

microRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF

Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...

متن کامل

Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway

Injury to terminally differentiated podocytes contributes ignificantly to proteinuria and glomerulosclerosis. The aim of this study was to examine the protective effects of notoginsenoside R1 (NR1) on the maintenance of podocyte number and foot process architecture via the inhibition of apoptosis, the induction of autophagy and the maintenance pf podocyte biology in target cells. The effects of...

متن کامل

AKT family and miRNAs expression in IL-2-induced CD4+T cells

Objective(s): Study of non-coding RNAs is considerable to elucidate principal biological questions or design new therapeutic strategies. miRNAs are a group of non-coding RNAs that their functions in PI3K/AKT signaling and apoptosis pathways after T cell activation is not entirely clear. Herein, miRNAs expression and their putative targets in the mentioned pathways were studied in the activated ...

متن کامل

(Pro)renin receptor regulates autophagy and apoptosis in podocytes exposed to high glucose.

High glucose reduces autophagy and enhances apoptosis of podocytes. Previously, we reported that high glucose induced podocyte injury through upregulation of the (pro)renin receptor (PRR). We hypothesized that increasing PRR reduces autophagy and increases apoptosis of mouse podocytes exposed to high glucose via activation of the PI3K/Akt/mTOR signaling pathway. Mouse podocytes were cultured in...

متن کامل

Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells

Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 306 2  شماره 

صفحات  -

تاریخ انتشار 2014